
 1

 2

0 Abstract

 3

synchronization safeguards not only enforce mutual exclusion, but also aid in the

enforcement of reliable communication between nodes in the distributed system. The

implementation of a dynamic rotating server selected from among the members of the

multicast group, in combination with a timestamp applied to all messages sent between

nodes in the system, forces the ordering of messages sent within the system. This adds a

level of predictability and stability to developed system and its communication

mechanism. The final implementation and integration of the 3DE, the distributed mutual

exclusion algorithm and the reliable system based on the multicast communication

protocol result in a distributed, three-dimensional world, which mimics the everyday

interaction between independent people vying for shared resources.

1 Introduction

The purpose of this project is to create a relia

 4

1.1 Unicast Protocol

Most of the gaming protocols that exist today are designed with a unicast system. A

unicast system is one in which there is, “one sender and one receiver.”1 Game

developers choose this protocol in order to ensure reliability without losing too much

time from speed. A client in the game will directly connect to the server and send

him the information that he wishes to spr

 5

each other client that is part of the multicast group will receive it. This means that

there is no intermediate steps and bypasses necessary to slow the transmission of the

packets down. One necessary element to this protocol is special routing hardware

that is necessary for the packet to get split into more packets while getting sent out to

the rest of the clients. You must realize that some routers do not have the capability

to do this, hampering the ability for this protocol to work over a widespread area.

The most essential pro of using a multicast protocol is the speed. Because only, “the

sending of one packet from one sender to multiple receivers with a single operation”3

is needed you cut down much of the handshaking and rerouting time done by a

traditional server.

1.3 My System

The system that I designed used the predefined multicast protocol with additions to

make it more reliable and fair. The major development that is added is the idea of a

rotating, dynamic server. This server is only used for a portion of the packets that are

being sent out that will necessitate permission to do certain tasks. Because the server

only receives this small portion of packets the rest of the game state transfer is much

faster. The server also has mechanisms built in to make sure that something a client

says happened did actually happen. The major breakthrough of my work is based on

this dynamic server, and the ability of it to rotate from client to client being sure not

to overload the system of one with the burden of extra work.

1.4 Putting it Together

 6

the graphic portion of the project, in which it was my job to send the distributed

material of it from client to client. Jonathan Pearlin focused on the deadlock

prevention and mutual exclusion of the code to ensure that it was not a faulty system.

2 Previous Work

Before trying to create my protocol and system I did a great amount of research on what

already exists and what people have proposed to do in the future. I found many

interesting ideas and topics about multicast gaming, rotating servers and the idea of using

a timestamp to ensure order in the system.

In trying to implement a system in whic

 7

The second worry that one must have when developing a reliable multicast system is

multiple-source ordering. This is the idea that if two sources send out two packets in the

order of m1 first and m2 second, all of the clients attached to the groups must receive

them in the order of m1 first and m2 second.5 Once again I use the rotating server to fix

this problem and ensure that all essential packets are sent and received in the proper

order; this will be described later.

The final circumstance that might alter the game and the reliability of it is multiple group

ordering. This is much similar to multiple source ordering, but there is one caveat added.

If the packets m1 and m2 are sent in that respective order they must be received by the

processes attached to the group also in that order. This even includes the situation where

they are sent to different, but overlapping multicast groups. This is a problem that I do

not have to specifically worry about, due to the fact that the clients may only be attached

to our group.6

Related to the above information, I then had to find a way to make sure that we could

order events to make sure that they were indeed sent/received in the correct sequence. To

attack this problem I read up on work done by Lamport. She gave me great insight on

what to do to fix this. The idea came in the form of a timestamp. One must realize that,

“Synchronization between the clocks kept by each system is imperative to avoid

unexpected results.”7

 8

update or change the timestamp in order to keep things reliable and not granting any of

the individual clients too much power and authority. The timestamp used is that of a

logical clock. This means that it does not actually change by a timing mechanism built

into the code. Instead it is based on events. This does indeed keep up with Lamport

when she stated, “Clock correctness is not based on physical time, but rather the order in

which events occur.”8

After I established a good foundation of research based on the idea of ordering events and

how to make it happen on a multicast network, I tried to find some information on the

plans for a rotating server. I was not able to find much work on it that has been done, but

I did find one interesting idea on the ordering of the server rotations. In a work done by

Charikar, Halperin and Motwani there was the proposal of actually having more rigid

guidelines of basing a k-server mechanism to rotate on. Their k-server mechanism is not

exactly the same as the one I propose. They have it so all the clients may either be a

server at the same time, or not be one at all. Whereas I propose to only have one of the

clients be a server, and the rest of strictly slaves to it. When it is then the servers time to

rotate it is done based on timestamp considerations. In the k-server proposition they add

a whole new level of dictating who rotates next. They have the idea of making the server

rotate to the next closest one to

 9

add it to my system. It seems to be a whole new thesis on it's own. Other than that work I

was unable to find any other published information on rotating servers.

3 Implementation

3.1 Windows Multicast Connection

Without previous knowledge on how the Microsoft system of networking worked, it

was necessary to first find out how to establish and maintain a multicast connection

using their predefined methods for the C++ language. All of the work that is needed

to make the connection is found in the constructer MulticastSocket(). In this

constructer you need to do a few things to bind the user to the group. The first thing

that is done is initializing Winsock. This is simply done with preexisting Microsoft

code. After that it is necessary to first open up a datagram socket and change the

 to do thih ih ah followh:

 UDPSocket = hocket(AF_INET,SOCK_DGRAM,0);

 11

receiver buffer. I chose not to use this since it would add a lot of code that would

need to check if it was yours, and if so disregards the packet. The code to turn loop

back off is as follows:

setsockopt(UDPSocket,IPPROTO_IP,IP_MULTICAST_LOOP,(char
*)&loopBack,sizeof(int)

Now that the connection is established as one that you may receive and send

multicast, or datagram packets on, I needed to worry about a higher level of control.

 12

windows, which has its own form of Winsocket. If we were to use Unix it again

would have been much easier for me to do, because in other classes I have not only

done multicast networking on Unix, but also have dealt with threading extensively.

3.2 Message Structure

The whole multicast system is based on the messages that are sent from client to

client throughout the game. To try to enhance the use of the Message object I created

I made it so the message is always the same one sent. So, whether the message is for

chatting or for just a normal game state you are always sending the same object.

However, flags in it represent the difference between each message. There is

basically a hierarchy of messages in the syst

 13

 14

game is already full. When the client receives this the program simply ends. The

final type of key that you are able to use is the LEAVE key. This is the key that a

player sends out when he wishes to leave a game. Each player then deletes that

player from their player list and makes the necessary updates to their other variables,

such as number of players.

The second major type of message that may be sent out is a chat message. The idea

behind the chat message is very simple. While the player is moving around he may

hit either the ‘T ‘ key to chat to his team, or the ‘R’ key to type to everyone. The

 15

If a computer has frozen and they are allowed to become the server the game would

freeze as any message they need to approve or deny is received. The next type of key

 16

In this section I would like to explain the idea of the timestamp that is incorporated

into the multicast scheme in our program. Because I am trying to target a multicast

protocol that is much more reliable than a traditional one where there is not control at

all, I settled on the necessity for a timestamp. This timestamp is a logical clock. As

you should remember this is not a timed clock, but one that changes based on a

sequence of events. With the use of the timestamp the server will be able to tell

whether or not certain events that have a mandatory placement on order have

happened in the right order. For example, if someone claims that they have shot

someone but the packet in which this information is sent states that the timestamp was

one that is older than the servers current timestamp the server knows to discard that

information, for it is not accurate. This is also extremely useful in people trying to

pick up some kind of resource, such as a health pack. If a player tries to pick one up

after the timestamp they have has expired, the server knows not to grant them

permission to pick it up. The timestamp is also used when a new player joins the

game. They know the player is new because the timestamp will be of the value one

and because they are sending out a membersh

 17

packet that will notify all the other players of this event occurring with his guarantee

that it was indeed a legal move. When the

 18

figure. In the figure to the right a player sends the whole group a message with key =

CHAT. However, the timestamp=2 in it. The rest of the group is up to timestamp = 4,

so they disregard the packet and the chat message is never seen.

3.4 Rotating Server

The most important aspect of the multicast protocol I designed is the rotating server.

Because early on I decided that the protocol needed to be as reliable as possible I

needed to come up with an idea to keep order. After some serious thinking I decided

that a rotating server would fit my scheme perfectly. One of the reasons I chose to

use mulitcast instead of unicast was I wanted it to be totally distributed amongst all

the players in the game. I did not want one independent server that took control over

 19

all of the parts of the game. I did not want the players only to be able to connect

directly to the server and communicate with him. So by having a server implemented

on a multicast network, I am able to not only enforce order and reliability, but I am

also able to maintain the abstract idea of having no real server in the system.

The server that I am using is rotating. By this I mean that the server is always

rotating from player to player. This means that not one computer can say that they

are in charge of the game as a whole. This is also extremely valuable in terms of not

hurting one player too much. If the server was stuck to a player and static the whole

time that person would be taxed an extreme amount dealing with requests. That

computer would always have more things to compute and more jobs than the other

computers, not giving him a fair chance to play. So by having the server move from

one person to another I evenly distribute the problem of having computation slowed a

bit over everyone on the network. This is much more fair then what is typically done

in a unicast system. This way everyone has a chance to be the server, and everyone

also has the number of players –

 20

power to decide what is indeed right and wrong. This adds a whole new level of

 21

have entered or left changing what place he is respective to the other players. Once

they have found their new spot they calculate their stop and start timestamp. They

also check to find out if they are the last person in the list, which affects the resetting

of the timestamp. So by running this code a player is able to always know when they

are and when they are not the server. This prevents an unfortunate situation where

two different players think they are the se

 22

 *timestamp = (*timestamp) + ping->getTSIncrement();
 *I_AM_SERVER = false;
 if(*timestamp == ((list->getNumPlayers() * MAX_SERVER_TRANS) - 1))
 *timestamp = 0;
 else if(*timestamp > ((list->getNumPlayers() * MAX_SERVER_TRANS) - 1))
 *timestamp = ping->getTSIncrement();

The second thing that I want to talk about as pertaining to the rotating server is a neat

little gimmick I added to it. After deliberation I decided that it is possible that the

person that is supposed to be the next server has gone idle, or his computer has

frozen. In this circumstance it is possible that he has not left the game, but is still

technically available to be the server. If this were to happen when he is tagged the

server the game would cease to work and chaos would be afoot. To solve this

problem I came up with an inactivity timer. The job of this timer is to prevent an

inactive server from taking control. The way that I worked this was when a player

first becomes a server he goes into a special loop. He sends out a special packet with

key = PING to each player. When each player gets this they respond to the server

saying they are active. The server then places an active flag in the list of players.

 23

When the server sees that it is about to lose its power it checks its inactivity list. If

the next player to become server never responded to him with an active response he

will not let him become the server. He will prevent this by incrementing the

timestamp enough to cover the potential frozen servers work time, thus skipping him.

The server will update the timestamp enough to find the next active server. And if

the next one is before him in the list, it will indeed reset the timestamp to the proper

number.

Finally, let me get into the actual duties of the server. The first actual duty of the

server is to allow new players to join the game. Because we are able to utilize the

server as an authority on the game as a whole, we have something that can tell a new

client if they are able to join. So when a new player sends out a packet that is

requesting to join the game the server first receives this. Every other player in the

game is coded to disregard a join message. When the server decides it is okay for that

player to enter he sends the appropriate OKAY_TO_JOIN message out to that person.

Each other player then receives it and knows to send out their own OKAY_TO_JOIN

to that player. A second thing that the server is in charge of is when a player shoots

another one. This scope also includes when a player dies, or the game is over,

because the server has the last say on what affects the actual scoreboard. When the

server receives a game state update he first checks to see if that person has shot his

laser. If so the server compares this to each person to see if any of the lasers have hit

anyone. If so it is the server’s job to send out the appropriate SHOOTER messages

stating that someone was hit, and or killed. Another important thing that the server is

 24

 25

to compute his own start and stop time to become the next server. So when this is all

done we have the knowledge of the server, the correct timestamp, each players start

and stop value for becoming and losing the rights to the server and a base to finally

start playing the game on. At this point the world that Evan McCarthy designed will

begin to draw and the game will be in full force.

One item of interest is that the server code is unique for the first person in the game.

Only the first person in the game will ever run the code that is there, and that is it.

However, the other client’s code is much more portable. Every other player that tries

to join the game will be able to run it. I will explain this in section 3.7, which talks

about what happens when additional players try to join the game. A diagram that

displays the initial handshake between the first two players can be seen below:

 26

3.6 Gaming with Two Players

 27

Once the game has been created with the two initial players the game can begin to

work in full swing. This means that all the parts that Jonathan Pearlin, Evan

McCarthy and I worked on will work together. The two players will be able to move

around as they wish in the 3-D environment like they will be in any other game.

They will originally spawn in the base of the team color that they chose on the initial

 28

The last thing that will occur often during a two-person game is the chatting aspect.

As I have stated earlier there are two ke

 29

When the other players in the game receive this packet that has the key

OKAY_TO_JOIN and coming from the server they know that a new player is being

allowed to join the game. The first thing they will do is add him to their list. They

then know that they have to send out a new packet with their information so the new

player can begin to add all of the existing players to his list of gamers. After the

player has sent out his information to be processed he makes sure to ignore all the

other OKAY_TO_JOIN messages that will be sent out by all the other active players,

for they will have no bearing on his game. Finally, that player will have to enter the

same loop as the server has to. He first has to determine his place as compared to the

rest of the players on the list. And off of that the player has to recalculate his start

and stop time for being the server.

Now lets look at what the client that is being granted permission to join does. Once

he receives the message with the key OKAY_TO_JOIN from the server he knows

that he is now able to become a legitimate player in the game. He first has to rip all

of his information from the packet that the server sent him. After that he has to begin

collecting data from the rest of the players. To do this he enters the following loop

that will only recognize

 30

 tsLock->exitCS();}}

When the player is done collecting the data from each of the other players in the game

he is now allowed to start playing the game like the rest of the players. One thing that

he has to do first, however, much like everyone else, is to computer his place

respective to the other players and to find out his new start and stop time for

becoming the server when it is indeed his time. This sequence of events can occur up

until the set maximum number of players in the game have been admitted and started

up.

4. Conclusion

After finishing my part of the project I was extremely satisfied as to the outcome of it.

After the research I was able to decide exactly what I needed to get off the ground and

start a gaming network based on the multicast protocol. There were always questions as

to what exactly I would have to do to make it all work and be much more reliable than

the things that had been done in the past. It was not overly difficult for me to add onto

previous work given the nature of the multicast protocol. You have to remember that not

all the hardware on routers on the Internet and networks are multicast compatible.

Because of this it has not been a great idea to put a lot of time into the development of

games that are run over a multicast network, for there would be questions as to whether

or not the game would be portable to all potential users.

The most important part of my work was to get the rotating server off the ground. It was

very essential that I could have some higher source of authority that could grant the

 31

various degrees of permission to the different users. Without that the game would not

have been run properly. The key parts of the rotating server were the inactivity timer to

prevent a defunct computer from trying to take over leadership, the timestamp

mechanism to make sure that there was some sort of logical clock that all the players

could look to and synchronize their timestamps to, and making sure that the timestamp

would go back to the beginning value when the number of transactions for each player

being the server had been done. If we did not reset the timestamp it is possible that we

can get overflow in a variable when the timestamp gets too high. Once I was able to get

the rotating server off the ground I was much more confident in being able to put the

whole system together.

None of this could be accomplished however without the work of Jonathan Pearlin and

Evan McCarthy. My networking protocol would not have been of too much help if there

was nothing to try and test it on to make sure that it was relatively fault proof. Evan’s

virtual world was exactly what I needed in order to test and run my system to be sure that

it was in actuality efficient and fast. I was extremely happy with how quickly it did work

and how little it bogs down the network on the co

 32

in the game. A player is able to walk up to the elevators and hit the ‘Space’ bar to open

the door. Every player in the game can subsequently see the door open at the same time

and the player enter it. The player can then press ‘Space’ again to shut the door and press

the number of the floor they want to go to and they will be brought there. This is yet

another great way to see that the game is indeed distributed between all the players.

Another extremely important part of the program was designed by the valiant efforts of

Jonathan Pearlin. Jonathan had the much more tedious task of designing the game as

whole and making sure that the entire thing worked without getting hung up. Some of

the many problems that could occur were from race conditions, deadlock and starvation.

 33

Special thanks to Jonathan Pearlin, Evan McCarthy and Robert Signorile.

 34

Sources Cited

Cisco Corporation, “Multicast Routing,” http://www.cisco.com/warp/public/614/17.html.
 March 1999.

Charikar, Moses, Dan Halperin and Rajeev Motwani, “The Dynamic Servers Problem,”
 1998.

Garcia-Molina and AnneMarie Spauster, “Ordered and Reliable Multicast

Communication,” August 1991.

Kurose, James and Keith Ross, Computer Networking: A Top Down Approach Featuring

