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Abstract

A diversion ratio, which measures the fraction of consumers that switch from one
product to an alternative after a price increase, is a central calculation of interest to
antitrust authorities for analyzing horizontal mergers. Two ways to measure diversion
are: the ratio of estimated cross-price to own-price demand derivatives, and second-
choice data. Policy-makers may be interested in either, depending on whether they are
concerned about the potential for small but widespread price increases, or product dis-
continuations. We estimate diversion in three applications { using observational price
variation and experimental second-choice data { to illustrate the trade-o�s between
di�erent empirical approaches. Using our estimates of diversion, we analyze potential
candidate products for divestiture in a hypothetical merger.
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1 Introduction

A diversion ratio, which measures the fraction of consumers that switch from one product to

an alternative after a price increase, is one of the best ways economists have for understanding

the nature of competition between sellers. Diversion ratios can be understood through the

lens of a Nash-in-prices equilibrium when sellers o�er di�erentiated products. Two products

with a high degree of di�erentiation face lower diversion and softer price competition, whereas

two products with a high degree of similarity to competing goods face higher diversion and

potentially tougher price competition.

Not surprisingly, diversion ratios are a central calculation of interest to antitrust author-

ities for analyzing horizontal mergers. The current U.S. merger guidelines, released in 2010,

place greater weight on diversion ratios relative to concentration measures more commonly



survey data or in a �rm's course of business. A 2017 commentary on retail mergers released

by the UK Competition and Markets Authority (CMA) describes their use of diversion ratios

for screening and analyzing mergers, saying:

Diversion ratios can be calculated in a number of di�erent ways, depending

on the information available in a particular case. In retail mergers, the CMA

has most often used the results of consumer surveys to calculate diversion ratios.

The diversion ratio attempts to capture what customers would do in response to

an increase in prices. However, it can be di�cult to survey a su�ciently large

number of customers who would switch in response to a price rise to estimate a

robust diversion ratio. Therefore, the CMA asks customers what they would do

in response to the closure of a store (or stores).3

In this paper, we analyze di�erent ways of estimating diversion ratios and characterize their

empirical properties.

The researcher or antitrust authority may prefer di�erent measurements of diversion in

di�erent settings. For example, if the antitrust authority is concerned with the potential

for small but widespread price increases, they may want to evaluate diversion by analyzing

estimated own- and cross-price derivatives at pre-merger prices. In contrast, if the antitrust

authority is concerned with the potential for product discontinuations, second-choice data

may be more informative. To clarify this point, we interpret a diversion ratio as a treatment

e�ect of an experiment in which the treatment is \not purchasing productj ." The treated

group consists of consumers who would have purchasedj at pre-existing prices, but no longer

purchasej at a higher price. The diversion ratio measures the outcome of the treatment,

(i.e., the fraction of consumers who switch fromj to a substitute product k).

When policy-makers are interested in measuring the e�ect of treating only those con-

sumers who substitute away fromj after a very small price increase, they are implicitly

evaluating a marginal treatment e�ect (MTE) at pre-merger prices.4 A challenge of directly

implementing such an experiment is that treating a small number of the most price-sensitive

individuals may lack statistical power. An alternative is to treat all individuals who would

have purchasedj at pre-existing prices, and thus estimate an average treatment e�ect (ATE).

This can be accomplished by surveying consumers about their second-choice products, or by

exogenously removing productj from the choice set. When the diversion ratio is constant,



the ATE coincides with the evaluation of the MTE at pre-merger prices. However, we show

that constant diversion is a feature of only the linear demand model and a `plain vanilla'

logit model. Other commonly-used models of demand, such as random-coe�cients logit or

log-linear models, do not feature constant diversion, and the ATE may diverge from the

MTE evaluated at pre-merger prices.

A related question for the antitrust authority is whether one can reliably estimate diver-

sion ratios using data from only the merging entities. To consider this question, it's useful to

consider two concepts: anaggregate diversion ratio, which Katz and Shapiro (2003) de�ne as

the \percentage of the total sales lost by a product when its price rises that are captured by

all of the other products in the candidate market," and adiversion matrix, which we de�ne

as a matrix whose o�-diagonal elements report diversion between each pair of products that

could potentially be considered for inclusion in a market, and whose diagonal elements report

diversion to the outside good.5 Discrete-choice models of demand imply a \summing up"

constraint so that each row of the diversion matrix (i.e., aggregate diversion plus diversion



the best substitute, and overstates diversion to the outside good compared to both the ATE

and MTE measures.

In a third application, we construct an empirical estimator for the ATE measure of

the diversion ratio by exogenously removing products from a set of vending machines in

a large-scale experiment and tracking subsequent substitution patterns. The experimental

setting precludes us from estimating diversion that would be relevant to a small price change

because we are not able to exogenously change prices, but it does not require any parametric

restrictions or any restrictions on aggregate diversion. In order to control for unobserved

demand shocks, we select valid controls and impose a simple requirement that product

removals cannot increase total sales, nor decrease total sales by more than the sales of the

product removed.

Having matched to these control observations, we consider, in turn, two additional as-

sumptions about economic primitives and examine how they help to estimate experimental

measures of the diversion ratio. The �rst assumption is that diversion to any single product

is between 0 and 100 percent. We incorporate this assumption through a non-parametric

Bayesian shrinkage estimator. We �nd that this improves our estimates of diversion, although

our estimates are sensitive to the strength of the prior. Next, we impose the assumption that

aggregate diversion plus diversion to the outside good sums to one. Our Bayesian shrinkage

estimator incorporates this assumption by nesting the parametric structural estimates of

diversion and the (quasi)-experimental measures in a single framework. With the \summing

up" constraint, even a very weak prior yields precise estimates of diversion ratios.

Our results highlight two important points: (1) Observing data from all products within

the market, rather than only products involved in a merger, is important when estimating

diversion ratios; and (2) in discrete-choice demand systems, the \summing up" constraint

may play a more important role for identi�cation than the parametric distribution of error

terms. Our applications also illustrate the fact that di�erent measures of diversion may

be relevant and/or available to policy-makers in di�erent settings. Several recent merger

cases have been concerned with the potential for small but widespread price increases, such

as in airline prices, and consumer goods and services.7 Other cases have centered around

the potential for product discontinuations, such as in hospital and airline networks, and in

several business-to-business markets.8

7Examples include the 2008 acquisition of Anheuser-Busch by InBev, and the American-US Air merger
in 2015 (Das 2017).

8Examples include the discontinuation of some data storage products in the 2016 Dell-EMC merger, and
route consolidation in the 2008 Delta-Northwest merger (Josephs 2018).
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Finally, our empirical exercise demonstrates how two di�erent measures of diversion can

be obtained in practice (i.e., through demand estimation or exogenous product removals),

how di�erent measures of diversion might vary, and how to design and conduct experiments

to measure diversion. Using the estimates of diversion from our second application, we

consider a hypothetical merger between Mars and Kellogg. We analyze diversion from key

products of each �rm to the brands of the other �rm. The exercise illustrates the ability of

diversion estimates to identify candidate products for divestiture requirements.

1.1 Related Literature

A second goal of the paper is to bring together two literatures { the applied theoretical

literature that motivates the use of diversion for understanding merger impacts, and an

applied econometric literature that articulates estimation challenges in settings for which

the treatment e�ect of a policy can vary across individuals and may be measured with error.

By exploring the assumptions required for a credible (quasi)-experimental method of

measuring diversion, we connect directly to the theoretical literature discussing the use and

measurement of the diversion ratio.9 Farrell and Shapiro (2010) suggest that �rms themselves







This matrix is useful to make three conceptual points: (a) if all products are substitutes

(rather than complements) and consumers make discrete choices, then each row of the matrix

must sum to one: D(p) � 1J = 1J ; (b) the sum of the o�-diagonal elements along a row



e�ect with a binary treatment (i.e., not purchasing product j ) and a binary outcome (i.e.,

purchasing productk or not). We denote this as:
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The treated group corresponds to individuals who would have purchased productj at price

p0
j but do not purchasej at price (p0

j + � pj ). The lower an individual's reservation price

for j , the more likely an individual is to receive the treatment. Thus, �pj functions as an

`instrument' because it monotonically increases the probability of treatment.

By focusing on the numerator in equation (2), we can re-write the diversion ratio using

the marginal treatment e�ects (MTE) framework of Heckman and Vytlacil (2005), in which

D jk (pj ; p0
� j ) is a marginal treatment e�ect that depends onpj .15
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As we varypj , we measure the weighted average of diversion ratios where the weightsw(pj ) =
1

� qj
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@pj
correspond to the lost sales ofj at a particular pj as a fraction of all lost sales.

This directly corresponds to Heckman and Vytlacil (2005)'s expression for the local average

treatment e�ect (LATE); we average the diversion ratio over the set of consumers of product

j who are most price sensitive. The LATE estimator varies with the size of the price increase

because the set of treated individuals varies. Equation (3) con�rms that the LATE estimate

concentrates more weight nearp0 when demand is more elastic, or when demand becomes

increasingly inelastic for larger �pj . In equation (4) the average treatment e�ect (ATE) is

the expression for the LATE in which all individuals are treated. This corresponds to an

increase inpj



for � pj our LATE estimate may di�er from the MTE evaluated at D jk (p0).

We can relate the divergence in the treatment e�ect measures ofD jk to the underlying

economic primitives of demand. Consider what happens when we examine a \larger than

in�nitesimal" increase in price � pj � 0. We derive an expression for the second-order

expansion of demand at (pj ; p� j ):
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This allows us to compute an expression for the di�erence between a LATE estimate\D LAT E
jk (� pj )

and the MTE evaluated at D jk (p0). We refer to this as the `bias' of the LATE estimate.17
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The expression in equation (6) shows that the bias (i.e., the di�erence between the two

estimates of diversion) depends on two things: the magnitude of the price increase �pj , and

the cur 0 G
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Equation (6) also provides insight into the economic implications of assuming a constant

treatment e�ect (i.e., assuming that D jk (pj ; p� j ) = D jk ). Constant diversion requires that

the bias calculation in equation (6) is equal to zero. Two functional forms for demand exhibit

constant diversion: linear demand, for which@2qk
@p2j

= 0, 8j; k ; and the IIA logit model, for

which D jk = � @2qk
@p2j

=@2qj

@p2j
. Implicitly when we assume that the diversion ratio does not vary

with price, we assume that the true demand system is well approximated by either a linear

demand curve or the IIA logit model.We derive these relationships, as well as expressions for

diversion under other demand models in Appendix A.1, and show that random-coe�cients

logit demand, and constant elasticity demands (including log-linear demand) do not generally

exhibit constant diversion.

To summarize, we can expect a LATE or ATE measure of diversion to be similar to

the MTE evaluated at p



changes. Although diversion to the three alternatives at any given price point is the same

as the case of inelastic demand, the ATE measure of diversion is now more heavily weighted

towards consumers that leave at small price changes (72% to Honda Civic, 10% to Tesla,

and 18% to the outside good).

2.3 Utilizing Second-Choice Data to Measure Diversion

Often researchers have access to second-choice data. For example, Berry, Levinsohn, and

Pakes (2004) observe not only market shares of cars, but also survey answers to the question:

\If you did not purchase this vehicle, which vehicle would you purchase?" Consumer surveys

provide a stated-preference method of recovering second-choice data. One may also construct

second-choice data through a revealed-preference mechanism by experimentally removing

product j from a consumer's choice set for a period of time.19 One can view such an

exogenous product removal as being equivalent to an increase in price to the choke pricepj ,

whereqj (pj ; p� j ) = 0. Thus, an exogenous product removal measures the ATE, treating all

of the pre-merger consumers of goodj and minimizing the variance expression in (7).

Notice the relationship between the ATE measure of diversion\D AT E
jk and second-choice

data, whereA is the set of available products andA nj denotes the set of available products

after the removal of productj :
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mimic the cereal industry from??.20 These applications allows us to measure diversion in

two ways: �rst, as the ratio of the estimated derivatives of demand evaluated at pre-merger

prices (a MTE evaluated atp0), and second, as the response to a simulated removal of a

product (an ATE). The discrete-choice nature of the demand system imposes a `summing-up

constraint' (i.e., that aggregate diversion plus diversion to the outside good sums to one).

The exercise is meant to demonstrate that the ATE and MTE measures of diversion may

not always coincide under commonly-used parametric forms of demand, and to allow us to

analyze characteristics of demand that may cause ATE and MTE measures to diverge.

3.1 Nevo (2000)

The data from Nevo (2000) cover sales of ready-to-eat (RTE) cereal inT = 94 markets

with J = 24 products per market.21 Nevo (2000) allows for aI = 20 point distribution

of heterogeneity for each market, product �xed e�ectsdj , unobserved heterogeneity in the

form of a multivariate normally distributed � i with variance �, and observable demographic

heterogeneity in the form of � interacted with a vector of demographicsdit .

uijt = dj + x jt (� + � � � i + � � dit )| {z }
� it

+� � jt + " ijt

We estimate parameters following the MPEC approach of Dub�e, Fox, and Su (2012).22 The

estimated coe�cient on price is distributed as follows:23

� price
it � N

�
� 62:73 + 588:21� incomeit � 30:19� income2

it + 11:06� I[child] it ; � = 3:31
�

:

We denote a measure of diversion evaluated for an in�nitesimally small price change as

a MTE . We refer to a `second choice' estimate of diversion as an ATE. For comparison, we

also evaluate a Logit model, under which diversion is assumed to be constant. In Appendix

A.1 we derive these measures for commonly-used parametric forms. For the parametric forms

20These data are posted online by the author, and are not the actual data used in??, which are proprietary.
21The data that Nevo (2000) is able to make available for replication exclude product and market names,

so we cannot reference speci�c product names or markets in our analysis.
22Technically we employ the continuously updating GMM estimator of Hansen, Heaton, and Yaron (1996)

and adapted to the BLP problem by Conlon (2016). For this dataset, CUE and 2-step GMM produce nearly
identical point estimates.

23One motivation for choosing this particular example is that it demonstrates a large degree of heterogene-
ity in willingness to pay. In Appendix A.2, we repeat this exercise with a restricted version of the demand
model at the original published estimates from Nevo (2000). The restriction imposed is that� inc 2 ;price = 0.
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3.2 Berry, Levinsohn, and Pakes (1999)

The data from Berry, Levinsohn, and Pakes (1999) cover sales of automobiles in the U.S. and

consist ofT = 21 markets (each market is a year) with up toJ = 150 products per market

and a total of 2,217 product-market pairs. The model allows for random tastes for: vehicle

size, miles-per-dollar, air conditioning, horsepower per unit of weight, and a constant. It also

allows for a coe�cient on price that depends on income. The model includes simultaneous

estimation of both supply and demand.

Tables 3 and 4 repeat the exercises in tables 1 and 2. Relative to the market for RTE

cereal, the market for automobiles features much greater price variation, and potentially

an opportunity for greater variation between the MTE and ATE measures of diversion. In

table 3, we see that overall levels of diversion to the best substitute are lower for the auto

application (about 6% on average) than for the RTE cereal application (15% on average),

and diversion to the best substitute for the logit model is very low, at less than one percent

(compared to 10% on average for RTE cereal). Table 4 shows that the percentage di�erence

between the MTE and ATE measures of diversion are indeed much larger than those for

RTE cereal. For the best substitute, the absolute di�erence between the MTE and ATE

measures of diversion is 12:6% on average (with a median absolute di�erence of 11:5%),

whereas averaging over all inside products gives an absolute di�erence between the two

measures of 40:3% on average (with a median absolute di�erence of 22:5%). Diversion to

the outside good di�ers across the two measures by 25% on average. Diversion under the

logit model is wildly di�erent from both the MTE and ATE measures; on average, it di�ers

by 240% for the best substitute and 177% across all products.

In a practical sense, the most important di�erence between the RTE cereal and auto-

mobile applications is likely the amount of price variation in the market. The fact that

the qualities, costs, and prices of autos vary so much more than qualities, costs, and prices

of breakfast cereals provides an opportunity to observe larger di�erences in the diversion

between marginal and inframarginal consumers of autos.

The ATE measure may either overstate or understate diversion to other products on

average compared to theMTE measure. If the marginal consumer tends to become more

(less) inelastic as the price increases, then the ATE will overstate (understate) substitution.25

25The elasticity of the marginal consumer will depend on the curvature of demand. For a plain vanilla
logit model, the logit error term implies that the elasticity of the marginal consumer increases with price.
However, this need not hold for other models of demand. For example, a random coe�cient logit model has
an inection point when market share exceeds 0.5. At the market level,sj < 0:5 for all j except for the
outside good. Empirically, the outside good share may be less than 0.5 in some markets, but greater than
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Reducing an estimator's ability to accommodate heterogeneity in consumer preferences pro-

ducesMTE and ATE measures that are closer together. We demonstrate this e�ect with

Monte Carlo simulations of commonly-used parametric demand models in Appendix A.3.

4 Empirical Application to Vending

In our third application, we estimate the ATE form of the diversion ratio using experimental

second-choice data. We run a �eld experiment with multiple treatment arms in which we ex-

ogenously remove a product from 66 vending machines located in o�ce buildings in Chicago.

The product removals allow us to measure subsequent diversion to the remaining products

without any parametric restrictions on demand. We begin with a discussion of the snack

foods/vending industry, including potential antitrust issues in subsection 4.1. We discuss

our experimental design in subsection 4.2, and describe our experimentally generated data

in subsection 4.3.

4.1 Description of Data and Industry

Globally, the snack foods industry is a $300 billion market annually, composed of a number

of large, well-known �rms and some of the most heavily-advertised global brands. Mars

Incorporated reported over $50 billion in revenue in 2010, and represents the third-largest

privately-held �rm in the US. Other substantial players include Hershey, Nestle, Kraft, Kel-

logg, and the Frito-Lay division of PepsiCo. While the snack-food industry as a whole might

not appear highly concentrated, sales within product categories can be very concentrated.

For example, Frito-Lay comprises around 40% of all savory snack sales in the United States,

and reported over $13 billion in US revenues last year, but its sales outside the salty-snack

category are minimal, coming mostly through parent PepsiCo's Quaker Oats brand and the

sales ofQuaker Chewy Granola Bars.26 We report HHI's at both the category level and for

all vending products in table 5 from the midwest region of the U.S. If the relevant market



snack-food vending machine, the HHI is below the critical threshold of 2500. Any evaluation

of a merger in this industry would hinge on the closeness of competition.

Over the last 25 years, the industry has been characterized by a large amount of merger

and acquisition activity, both on the level of individual brands and entire �rms. For example,

the Famous Amoscookie brand was owned by at least seven �rms between 1985 and 2001,

including the Keebler Cookie Company (acquired by Kellogg in 2001), and the Presidential

Baking Company (acquired by Keebler in 1998).Zoo Animal Crackershave a similarly com-

plicated history, having been owned by Austin Quality Foods before they too were acquired

by the Keebler Cookie Co. (which in turn was acquired by Kellogg).27

Our study measures diversion through the lens of a single medium-sized retail vending

operator in the Chicago metropolitan area, Mark Vend Company. Each of Mark Vend's

machines internally records price and quantity information. The data track total vends and

revenues since the last service visit on an item-level basis, but do not include time-stamps

for each sale. Any given machine can carry roughly 35 products at one time, depending on

con�guration.

We observe retail and wholesale prices for each product at each service visit during a

38-month panel that runs from January 2006 to February 2009. There is relatively little

price variation within a site, and almost no price variation within a category (e.g., chocolate

candy) at a site. This is helpful from an experimental design perspective, but can pose

a challenge to structural demand estimation. Very few \natural" stock-outs occur at our

set of machines.28 Most changes to the set of products available to consumers are a result

of product rotations, new product introductions, and product retirements. Over all sites

and months, we observe 185 unique products. Some products have very low levels of sales

and we consolidate them with similar products within a category produced by the same

manufacturer, until we are left with 73 `products' that form the basis of the rest of our

exercise.29

27Snack foods have an important historic role in market de�nition. A landmark case was brought by
Tastykake in 1987 in an attempt to block the acquisition of Drake (the maker of Ring-Dings) by Ralston-
Purina's Hostess brand (the maker of Twinkies). That case established the importance of geographically
signi�cant markets, as Drake's had only a 2% market share nationwide, but a much larger share in the
Northeast (including 50% of the New York market). Tastykake successfully argued that the relevant market
was single-serving snack cakes rather than a broad category of snack foods involving cookies and candy bars.
[Tasty Baking Co. v. Ralston Purina, Inc., 653 F. Supp. 1250 - Dist. Court, ED Pennsylvania 1987.]

28Mark Vend commits to a low level of stock-out events in its service contracts.
29









5 A Nonparametric Estimator for Diversion

Our estimates of diversion face two major challenges: (1) the set of products may vary

for non-experimental reasons across machines and time; (2) demand is volatile both at the

product level, and at the aggregate level.

Using four simple assumptions motivated by economic theory, we develop an estimator for

the average treatment e�ect version of the diversion ratio which deals with these challenges.

The �rst two assumptions restrict the set of machine-weeks that can act as a control for a

particular machine-treated week as in amatching estimator. The second two assumptions

a�ect the way in which estimates of c� qj ; c� qk are used to constructD jk and employ the

principle of Bayesian Shrinkage. All four assumptions are implications of the economic

restriction that consumers make discrete choices among substitutes.38 Using the following

four assumptions we demonstrate how we estimateD jk from our experimental data.

Assumption 1. Valid Controls For a machine-week observation to be included as a control

for qk;t it must: (a) have productk available; (b) be from the same vending machine; (c) not

be included in any of our treatments.

Assumption 2.



We adjust our calculation of the expectation to address the volatility of demand.40 To be

explicit, one can introduce a covariate� (demand shock):

E[qk jW = w] =
Z

qk(�; w )f (� jW = w)d �

The treated and control periods have di�erent distributions of covariates (demand shocks)

becausef (� jW = 1) 6= f (� jW = 0). The typical solution involves matching or balancing,

where one re-weights observations in the control period using measureg(�) so that f (� jW =

1) = g(� jW = 0) and then calculates the expectationEg[qk jZ = 0] with respect to measure

g.41 For each treated weekt, one can construct a set of matched control weeks within a

neighborhoodS(� t ), whereS(� t ) is the set of control weeks that correspond to treated week

t, and � t is an unobserved demand shock. Having chosenS(� t ), the change in sales for the

chosen control weeks is given as:

� qk;t (� t ) = qk;t (� t ) �
1

j# s 2 S(� t )j

X

s2 S(� t )

qk;s with d� qk =
X

t

� qk;t (� t ) (9)

Our �rst two assumptions tell us how to chooseS(� t ). Assumption 1 is straightforward:

it controls for unobserved machine-level heterogeneity by restricting potential controls to

di�erent (untreated) weeks at the same machine. If� t were observed, one could employ con-

ventional matching estimators (such ask-nearest neighbor or local-linear regression (Abadie

and Imbens 2006)). However,� t is unobserved, so we rely on Assumption 2 (removing a

product cannot increase total sales, and cannot reduce sales by more than the sales of the

product removed) instead.

We implement Assumption 2 as follows. We letQt denote the sales of all products during

the treated machine-week, andQs



us to understate the diversion ratio. We propose a modi�cation of (10) that is unbiased. We

replaceqjs with cqjs = E[qjs jQs; W = 0]. An easy way to obtain the expectation is to run

an OLS regression ofqjs on Qs using data only from untreated machine-weeks that satisfy

Assumption 1:

St � f s : Q0
s � Q1

t 2 [0; bb0 + bb1Q0
s]g (11)

Thus (11) de�nes the set of control periodsSt that correspond to treatment periodt under

Assumptions 1 and 2.42 Plugging this into equation (9) gives estimates ofd� qk and d� qj .43

5.2 Bayesian Shrinkage Assumptions

Our Assumptions 3 and 4 place restrictions on how we calculate the diversion ratio given

our estimates ofd� qk and d� qj . The idea is that there may be better estimates ofD jk than

the simple ratio
d� qk
d� qj

. For example, we might �nd large but noisy estimates of diversion to a

substitute product based on only a few observations and a better estimate might adjust for

that uncertainty. 44

We can see how these assumptions work by writing the diversion ratio as the probability

of a binomial with � qj trials and � qk successes:

� qk j� qj ; D jk � Bin (n = � qj ; p = D jk ) (12)

This is considered a nonparametric estimator as long as we estimate a separate binomial

probability D jk for each (j; k ).

We implement Assumption 3 by placing a prior onD jk that restricts all of the mass to the

unit interval D jk j� jk ; mjk � Beta(� jk ; mjk ). Assumption 4 goes further and restricts thevec-
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tor D j � to the unit simplex, which we implement with the priorD j � � Dirichlet (� j 0; � j 1; : : : ; � jK ; mjk ).

This has the e�ect of using information aboutD jk to inform our estimates forD jk 0.

There are two ways to parametrize the Beta (and Dirichlet) distributions. In the tradi-

tional Beta(� 1; � 2) formulation � 1 denotes the number of prior successes and� 2 denotes the

number of prior failures (observed before any experimental observations). Under an alterna-

tive formulation, Beta(�; m ): � = � 1
� 1+ � 2

denotes the prior mean andm denotes the number

of \pseduo-observations"m = � 1 + � 2. We work with the latter formulation for both the

Beta and Dirichlet distributions.45 This formula makes it easy to express the posterior mean

(under Assumption 3) as ashrinkage estimatorthat combines our prior information with

our experimental data:

dD jk = � � � jk + (1 � � )
� qk

� qj
; � =

mjk

mjk + � qj
(13)

The weight put on our prior mean is denoted by� , and directly depends on how many

\pseudo-observations" we observe from our prior before observing experimental outcomes.

One reason this estimator is referred to as a \shrinkage" estimator, is because as �qj be-

comes smaller (and our experimental outcomes are less informative),bD jk shrinks towards� jk

(from either direction). Thus, when our product removals provide lots of information about

diversion from j to k we rely on the experimental outcomes, but when our experimental

variation is less informative, we rely more on our prior information.46 This has the desirable

property of taking extreme but imprecisely estimated parameters and pushing them towards

the prior mean.

Our remaining challenge is how to specify the prior (� jk ; mjk ). Ideally, the location of

the prior � would be largely irrelevant while the prior strengthm would be as small as

possible.47 An uniform or uninformative prior might be to let �











respectively). Products outside of the merging �rms with high diversion are not reported

in table 12, but are listed in table 8. These include Nestle's Butter�nger, Kraft's Planters

Peanuts, and PepsiCo's Rold Gold and Sun Chips snack brands.58 Recalling the estimates of

diversion from table 8, the most important substitutes for Peanut M&Ms are already owned

by Mars, as Snickers, Plain M&M's, and Twix comprise diversion of roughly 30%.

Table 13 reports diversion from Kellogg's top two products to Mars' brands. Once again,

the `adding up' constraint of Assumption 4 reduces overall diversion to Mars' brands from

52% to 22% in the case of Zoo Animal Crackers, and corrects a negative estimate of overall

diversion in the case of Famous Amos cookies. Estimates of diversion without Assumption

4 identify Milky Way as having high diversion for both of Kellogg's products (23% and 19%

diversion under no prior for Animal Crackers and Famous Amos, respectively); applying

Assumption 4 reduces these estimates to less than 2%. The degree of diversion from Zoo

Animal Crackers to Snickers, Plain and Peanut M&Ms, and Twix Caramel is considerable

even with Assumption 4 (a total of about 22%), so one might worry about the potential for

a price increase on Zoo Animal Crackers. Products outside of the merging �rms that have

high diversion from Zoo Animal Crackers and Famous Amos cookies are similar to those for

Mars' agship products: PepsiCo's Rold Gold pretzels (for Animal Crackers), and PepsiCo's



economic primitives such as the curvature of demand, whereby the average diversion ratio

from second-choice data (ATE) is a good approximation for the MTE.

We explore the empirical properties of diversion ratios in three applications. In the �rst

two, we estimate discrete-choice models of demand using data from Nevo (2000) and Berry,

Levinsohn, and Pakes (1999). In the third, we analyze a randomized �eld experiment, in

which we exogenously remove products from consumers' choice sets and measure the ATE

directly.

We develop a simple method to recover the diversion ratio from data, which enables us

to combine both experimental and quasi-experimental measures with structural estimates as

prior information. A non-parametric Bayes shrinkage approach enables us to use prior infor-

mation (or potentially structural estimates) when experimental measures are not available,

or when they are imprecisely measured, and to rely on experimental measures when they are

readily available. This facilitates the combination of both �rst- and second-choice consumer

data. We show that these approaches are complements rather than substitutes, and we �nd

bene�ts from measuring diversion not only between products involved in a proposed merger,

but also from merging products to non-merging products.

Our hope is that this makes a well-developed set of quasi-experimental and treatment

e�ects tools available and better understood to both researchers in industrial organization

and antitrust practitioners. While the diversion ratio can be estimated in di�erent ways,

researchers should think carefully about (1) which treatment e�ect their experiment (or

quasi-experiment) is actually identifying; and (2) what the identifying assumptions required

for estimating a diversion ratio implicitly assume about the structure of demand.

30





Competition and Markets Authority (2017): \Retail Mergers Commentary," April
10, https://www.gov.uk/government/publications/retail-mergers-commentary-cma62.

Conlon, C. (2016): \The MPEC Approach to Empirical Likelihood Estimation of De-
mand," Unpublished Mansucript. Columbia University.

Conlon, C., and J. H. Mortimer (2013a): \Demand Estimation Under Incomplete
Product Availability," American Economic Journal: Microeconomics, 5(4), 1{30.

(2013b): \E�ects of Product Availability: Experimental Evidence," NBER Working
Paper 16506.

(2017): \All Units Discount: Experimental Evidence from the Vending Industry,"
Working Paper.

Das, S.



Heckman, J. J., and E. Vytlacil (2005): \Structural Equations, Treatment E�ects, and
Econometric Policy Evaluation," Econometrica, 73(3), 669{738.

Jaffe, S., and E. Weyl (2013): \The �rst-order approach to merger analysis,"American
Economic Journal: Microeconomics, 5(4), 188{218.

James, W., and C. Stein (1961): \Estimation with quadratic loss," in Proceedings of the
fourth Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 361{379.

Josephs, L. (2018): \`We wanted to go �rst.' Here's what's di�erent in the decade since



Nevo, A., and M. Whinston (2010): \Taking the Dogma out of Econometrics: Structural
Modeling and Credible Inference,"The Journal of Economic Perspectives, 24(2), 69{82.

Reynolds, G., and C. Walters (2008): \The use of customer surveys for market de�ni-
tion and the competitive assessment of horizontal mergers,"Journal of Competition Law
and Economics, 4(2), 411{431.

Schmalensee, R. (2009): \Should New Merger Guidelines Give UPP Market De�nition?,"
Antitrust Chronicle , 12, 1.

Shapiro, C. (1995): \Mergers with di�erentiated products," Antitrust , 10, 23.

Sims, C. (2010): \But Economics Is Not an Experimental Science,"The Journal of Eco-
nomic Perspectives, 24(2), 59{68.

Stock, J. (2010): \The Other Transformation in Econometric Practice: Robust Tools for
Inference," The Journal of Economic Perspectives, 24(2), 83{94.

Team, S. (2015): \RStan: the R interface to Stan, Version 2.8.0," .

Werden, G. J. (1996): \A Robust Test for Consumer Welfare Enhancing Mergers among
Sellers of Di�erentiated Products," Journal of Industrial Economics, 44(4), 409{13.

Werden, G. J., and L. Froeb (2006): \Unilateral competitive e�ects of horizontal merg-
ers," Handbook of AntitrustEconomics.

Willig, R. (2011): \Unilateral Competitive E�ects of Mergers: Upward Pricing Pressure,
Product Quality, and Other Extensions," Review of Industrial Organization, 39(1-2), 19{
38.

34



(a) Linear Demand

(b) Inelastic CES Demand

(c) Elastic CES Demand

Figure 1: A Thought Experiment { Hypothetical Demand Curves for Toyota Prius
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Figure 2: Total Overall Sales and Sales of Snickers and M&M Peanuts by Week

36





MTE ATE Logit
Best Substitute

Med(D jk ) 5.10 5.04 0.46
Mean(D jk ) 6.07 6.25 0.53
% Agree with MTE 100.00 96.89 95.62



Manufacturer: Category:
Salty Snack Cookie Confection Total

PepsiCo 78.82 9.00 0.00 37.81
Mars 0.00 0.00 58.79 25.07
Hershey 0.00 0.00 30.40 12.96
Nestle 0.00 0.00 10.81 4.61
Kellogg's 7.75 76.94 0.00 11.78
Nabisco 0.00 14.06 0.00 1.49
General Mills



Manufacturer Product Control
Mean

Treatment
Mean

Treatment
Quantile

Snickers Removal
Mars M&M Peanut 309.8 472.5 100.0
Pepsi Rold Gold (Con) 158.9 331.9 91.2
Mars Twix Caramel 169.0 294.1 100.0
Pepsi Cheeto 248.6 260.7 61.6
Snyders Snyders (Con) 210.2 241.6 52.8
Kellogg Zoo Animal Cracker 183.1 233.7 96.8
Kraft Planters (Con) 161.1 218.8 96.0

Total 4892.1 5357.9 74.4
M&M Peanut Removal

Mars Snickers 300.9 411.8 99.2
Snyders Snyders (Con) 209.7 279.0 76.8
Pepsi Rold Gold (Con) 158.9 276.9 80.8
Pepsi Cheeto 248.6 251.0 47.2
Mars Twix Caramel 167.9 213.8 90.416740 089Mar454.229T
q
1 0 0 1 188.392 511.215 cm
[]0 d47
Twi442.274T
q
1 



Mfg Product Treated � qk � qj � qk / Assn 3 Assn 3 Assn 4
Machine Subst Focal j� qj j Diversion Diversion Diversion

Weeks Sales Sales Div (m = K ) (m = 300) (m = 4 :15)
Snickers Removal

Mars M&M Peanut 176 375.5 -954.3 39.4 37.0 30.8 18.4
Mars Twix Caramel 134 289.6 -702.4 41.2 37.9 29.5 15.9
Pepsi Rold Gold (Con) 174 161.4 -900.1 17.9 16.8 13.9 7.5
Nestle Butter�nger 61 72.9 -362.8 20.1 17.1 11.2 4.5
Mars M&M Milk Chocolate 97 71.8 -457.4 15.7 13.8 9.8 4.1
Kraft Planters (Con) 136 78.0 -759.9 10.3 9.6 7.8 3.8
Kellogg Zoo Animal Cracker 177 65.7 -970.2 6.8 6.5 5.7 2.9
Pepsi Sun Chip 159 45.3 -866.1 5.2 5.0 4.3 2.1
Hershey Choc Hershey (Con) 41 29.8 -179.6 16.6 12.2 6.3 2.0
Kellogg Rice Krispies Treats 17 17.7 -66.5 26.7 13.5 5.0 1.3
Misc Farleys (Con) 18 14.9 -114.2 13.0 8.3 3.7 1.0
Nestle Nonchoc Nestle (Con) 3 9.4 -10.5 89.5 12.4 3.1 0.7
Mars Choc Mars (Con) 11 6.4 -32.7 19.7 6.5 2.0 0.4
Hershey Payday 2 1.1 -9.8 10.9 1.4 0.4 0.1
Mars 3-Musketeers 2 0.0 0.0
Misc BroKan (Con) 3 0.0 0.0

Outside Good 180 460.9 -970.2 47.5 23.1
M&M Peanut Removal

Mars Snickers 218 296.6 -1239.3 23.9 22.9 19.9 16.5
Mars Twix Caramel 176 110.9 -1014.3 10.9 10.4 8.9 6.8
Mars M&M Milk Chocolate 99 73.5 -529.6 13.9 12.5 9.2 6.3
Nestle Raisinets 181 71.8 -1001.1 7.2 6.8 5.8 4.4
Kraft Planters (Con) 190 61.4 -1046.1 5.9 5.6 4.9 3.6
Hershey Twizzlers 62 33.0 -333.0 9.9 8.3 5.3 3.4
Kellogg Rice Krispies Treats 46 22.4 -220.2 10.2 7.9 4.4 2.5
Pepsi Frito 160 37.2 -902.4 4.1 4.0 3.5 2.4
Misc Hostess Pastry 11 12.5 -38.6 32.5 12.3 4.0 1.8
Kellogg Brown Sug Pop-Tarts 10 10.0 -43.5 22.9 9.2 2.9 1.4
Nestle Nonchoc Nestle (Con) 1 0.9 -4.6 19.5 1.3 0.3 0.2
Misc Cli� (Con) 1 0.4 -1.8 22.2 0.6 0.1 0.0

Outside Good 218 606.2 -1238.5 48.9 36.3

Table 8: Raw and Bayesian Diversion Ratios, Mars' Products
Notes: Treated Machine Weeks shows the number of treated machine-weeks for which there was at least one
control machine-week. � qk Subst Sales shows the change in substitute product sales from the control to
the treatment period, while � qj Focal Sales shows the analogous change for focal product sales. �qj =j� qj j
Diversion is the ratio of the change in substitute product sales to the absolute value of the change in
focal product sales. Beta-Binomial (Weak Prior) Diversion and Beta-Binomial (Strong Prior) Diversion are



Mfg Product Treated � qk � qj � qk / Assn 3 Assn 3 Assn 4
Machine Subst Focal j� qj j Diversion Diversion Diversion

Weeks Sales Sales Div (m = K ) (m



Total Assn 1 Assn 2 Assn 3 Assn 4
(m = K ) (m = 4.15)

Snickers Removal
Products with D jk < 0 51 24 26 0 0
Products with 0 � D jk � 10 51 13 15 43 48
Products with 10 � D jk � 20 51 5 5 5 2
Products with D jk > 20 51 9 5 3 1
Sum of all positiveD jk s 51 402.84 301.95 265.41 98.72
Sum of all negativeD jk s 51 -238.90 -239.07 0.00 0.00

M&M Peanut Removal
Products with D jk < 0 52 20 30 0 0
Products with 0 � D jk � 10 52 22 17 48 50
Products with 10 � D jk � 20 52 6 3 2 1
Products with D jk > 20 52 4 2 2 1
Sum of all positiveD jk s 52 295.36 168.92 156.28 97.72
Sum of all negativeD jk s 52 -191.73 -157.31 0.00 0.00

Zoo Animal Crackers Removal
Products with D jk < 0 49 11 21 0 0
Products with 0 � D jk � 10 49 15 15 39 48
Products with 10 � D jk � 20 49 11 8 8 0
Products with D jk > 20 49 12 5 2 1
Sum of all positiveD jk s 49 644.90 331.96 265.31 92.78
Sum of all negativeD jk s 49 -394.12 -280.96 0.00 0.00

Chocolate Chip Famous Amos Removal
Products with D jk < 0 48 25 27 0 0
Products with 0 � D jk � 10 48 11 8 37 46
Products with 10 � D jk � 20 48 4 7 7 1
Products with D jk > 20 48 8 6 4 1
Sum of all positiveD jk s 48 417.51 384.60 288.99 95.44
Sum of all negativeD jk s 48 -444.17 -400.97 0.00 0.00

Table 10: Summary Statistics for Diversion Estimates across Products
Note: Table includes only products for which there were at least 50 sales of the focal product in control
weeks, on average.
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Manuf Product Mean 2:5th

Quantile
25th

Quantile
50th

Quantile
75th

Quantile
97:5th

Quantile
Snickers Removal

Mars M&M Peanut 18.40 16.79 17.83 18.39 18.95 20.02
Mars Twix Caramel 15.88 14.28 15.32 15.88 16.45 17.53
Pepsi Rold Gold (Con) 7.54 6.49 7.15 7.53 7.92 8.69
Nestle Butter�nger 4.45 3.53 4.10 4.43 4.78 5.48
Kellogg Rice Krispies Treats 1.30 0.78 1.09 1.28 1.49 1.95
Nestle Nonchoc Nestle (Con)



Treated No Assn 3 Assn 4
Machine Prior Diversion Diversion
Weeks (m = K ) (m = 4 :15)
Snickers to Kellogg's Products

Zoo Animal Cracker 177 6.77 6.53 2.92
(5.13; 8.09) (2.27; 3.65)

CC Famous Amos 180 4.61 4.46 1.99
(3.29; 5.79) (1.40; 2.69)

Choc Sandwich FA 69 8.39 7.31 1.98
(5.18; 9.77) (1.45; 2.59)

Rice Krispies Treats 17 26.68 14.18 1.31
(8.66; 20.66) (0.79; 1.96)

Cheez-It Original SS 150 0.26 0.35 0.10
(0.07; 0.82) (0.01; 0.27)

Pop-Tarts* 162 -4.28 0.10 0.00
(0.00; 0.38) (0.00; 0.02)

Total (to Kellogg's) 42.44 32.93 8.30
(26.54; 40.04) (7.14; 9.56)

Outside Good 180 47.50 46.19 23.19
(43.17; 49.27) (21.39; 24.99)

Peanut M&M to Kellogg's Products
Rice Krispies Treats 46 10.16 7.87 2.74

(5.12; 11.12) (1.73; 3.95)
CC Famous Amos 215 0.27 0.30 0.17

(0.10; 0.66) (0.04; 0.40)
Cheez-It Original SS 188 -4.81 0.09 0.00

(0.00; 0.31) (0.00; 0.03)
Zoo Animal Cracker 218 -2.62 0.10 0.00

(0.01; 0.32) (0.00; 0.04)
Pop-Tarts* 191 -1.80 0.07 0.00

(0.00; 0.27) (0.00; 0.03)
Choc Sandwich FA 70 -0.89 0.05 0.00

(0.00; 0.34) (0.00; 0.03)
Total (to Kellogg's) 0.30 8.46 2.92

(5.71; 11.74) (1.89; 4.15)
Outside Good 218 48.95 47.85 37.62

(45.26; 50.33) (35.45; 39.82)
Table 12: Divestitures: Diversion from Mars to Kellogg's products.

* Combines Strawberry, Cherry, and Brown Sugar avors.
Notes: Number of observations for outside good reects total treatment weeks.
95% credible intervals given in parentheses for binomial and multinomial diversions.
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Treated No Assn 3 Assn 4
Machine Prior Diversion Diversion
Weeks (m



A Appendix:

A.1 Diversion Under Parametric Demands

This section derives explicit formulas for the diversion ratio under common parametric forms
for demand, focusing on whether or not the diversion ratio implied by a particular paramet-
ric form of demand is constant with respect to the magnitude of the price increase. We show
that the IIA logit and linear demands model exhibit this property, while the log-linear and
mixed logit models do not necessarily exhibit this property. We go through several deriva-
tions below.

Linear Demand
The diversion ratio under linear demand has the property that it does not depend on the
magnitude of the price increase. We specify linear demand as:

Qk = � k +
X

j

� kj pj :

where� kj is the increase or decrease ink's quantity due to a one-unit increase in prouctj 's
price. This implies a diversion ratio corresponding to a change in pricepj of � pj :

D jk =
� Qk

� Qj
=

� kj � pj

� jj � pj
=

� kj

� jj
(A.14)

Thus, for any change inpj from an in�nitesimal price increase up to the choke price ofj ,
the diversion ratio D jk is constant. This also implies that under linear demand, diversion is



This holds for small changes inpj . However for larger changes inpj we can no longer use
the simpli�cation that � log( Qj ) � � Q j

Q j
. So for a large price increase (such as to the choke

price pj ! 1 ), log-linear demand can exhibit diversion that depends on the magnitude of
the price increase.

IIA Logit Demand
The plain logit model exhibits IIA and proportional substitution, which implies that the
diversion ratio does not depend on the magnitude of the price increase. We consider two price
increases: an in�nitesimal one and an increase to the choke pricepj ! 1 . The derivation
of the diversion ratio D jk under an IIA logit demand model uses a utility speci�cation and
choice probabilities given by well-known equations, whereat denotes the set of products
available in market t:

uijt = x jt � � �p jt| {z }
~vjt

+ " ijt

Sjt =



@2qj

@p2j
= � 2(1 � 2Sj )(Sj � S2

j )

@2qk

@p2j
= � � 2(1 � 2Sj )Sj Sk

�

@2qk
@p2j
@2qj

@p2j

=
Sk

1 � Sj
= D jk

Nested Logit Demand
Recall the estimating equation for the nested logit from Berry (1994):

ln sjt � ln s0t = x jt � � �p jt + � ln sj j Sj )(Sj �Recalltheestimatingequatio Td [(j)]TJ/F66 7.9701 Tf 2587Tf 2587Tf 2587Tf 258/F23 11.9552 Tf -147.884 -39.727 J/F68 7.9[(2)]TJ/F1+



price increase might see substitution from a larger set of consumers. If price sensitivity is
correlated with other tastes, then the diversion ratio could di�er with the magnitude of the
price increase.

We can repeat the same exercise for the logit model with random coe�cients, by dis-
cretizing a mixture density over i = 1; : : : ; I representative consumers, with population
weight wi :

uijt =

Vijt
z }| {
x jt � � �p jt + � jt|



� is not identi�ed. The easiest choice of a non-pricezjt is � jt , the unobserved product
quality term. The role of � z is to determine how many individuals receive the treatment as
we vary the instrument, but this matters neither in the in�nitesimal case, nor in the ATE
(second-choice) case.

It is important to note that for any two variables for which there is no preference hetero-
geneity, they yield the same in�nitesimal diversion ratios under the logit family. Likewise any
two variables (irrespective of preference heterogeneity) yield the same ATE (second choice
diversion ratios). This is in contrast with the treatment e�ects literature, where di�erent
instruments trace out di�erent MTEs. Thus, the single index of the logit family places an
important restriction on the treatment e�ects (which may or may not be reasonable).

A.2 Alternative Speci�cations for Nevo (2000) Example

Here we repeat the same exercise as in section 3 from the text, but with di�erent parameter
estimates. In the �rst case we use the original published estimates from Nevo (2000) where
� price

it exhibited substantially less heterogeneity, while in the second we consider a restricted
MPEC estimator which imposes the demographic interaction betweenincome2 and price
is equal to zero: � inc 2 ;price = 0. We report those parameter estimates below as well as the
estimates in the text from Dub�e, Fox, and Su (2012):

DFS (2012): � price
it � N (� 62:73 + 588:21� incomeit � 30:19� income2

it +11:06� I[child] it ; � = 3:31)

Nevo(2000): � price
it � N (� 32:43 + 16:60� incomeit � 0:66� income2

it +11:63� I[child] it ; � = 1:85)

Restricted: � price
it � N (� 34:09 + 8:53� incomeit +18:16� I[child] it ; � = 1:04)

We report both cases in table 14. We observe substantially less heterogeneity in� price
it and

we also observe that theMTE and ATE measures tend to be more similar to one another.

A.3 Discrepancy Between Average and Marginal Treatment E�ects

We perform a Monte Carlo study to analyze the extent to which the average treatment
e�ect deviates from the marginal treatment e�ect under di�erent demand speci�cations. We
generate data by simulating from a random coe�cients logit model with a single random
coe�cient on price. Our simulations follow the procedure in Armstrong (2016), Judd and
Skrainka (2011) and Conlon (2016), in which prices are endogenously determined via a
Bertrand-Nash game given the other utility parameters (rather than directly drawn from a
distribution).

We generate the data in the following manner:uit = � 0 + x j � 1 � � i pj + � j + " ij and
mcj =  0 +  1x j +  2zj + � j where x j ; zj � N (0; 1), with � j = �! j 1 + (1 � � )! j 2 � 1

� j = �! j 1 � � )! j2 � �e42 2 ) �j ;is �it



med(y � x) mean(y � x) med(jy � xj) mean(jy � xj) std( jy � xj)
Nevo (2000) Estimates

Best Substitutes
ATE 1.39 2.45 2.51 4.16 5.00
Logit -31.83 -35.01 32.72 38.40 29.13

All Products
ATE 1.05 1.91 3.18 4.97 5.42
Logit -29.15 -29.09 33.98 40.05 31.60

Outside Good
ATE -2.90 -3.24 3.09 3.76 3.05
Logit 32.52 40.49 32.52 41.02 30.67

Restricted Estimates � inc 2 ;price = 0
Best Substitutes

ATE 2.52 5.26 4.77 7.78 9.02
Logit -41.56 -40.50 43.23 47.47 29.60

All Products
ATE 2.02 3.11 7.34 11.12 11.39
Logit -33.48 -19.13 50.80 56.00 36.46

Outside Good
ATE -5.11 -6.45 5.14 6.70 5.73
Logit 30.46 35.38 30.56 37.05 27.04

Table 14: Alternative Speci�cations for Nevo (2000).





A.4 Robustness to Alternative Priors Under Assumpton 4

Our formulation of Assumption 4 uses Dirichlet prior centered on the IIA logit diversion
estimates (proportional to marketshare).59 Because some potential substitutes see �qk � 0
and may have priorssk near zero, we need to bound the prior probabilities away from
zero in order to avoid drawing from degenerate distributions. Therefore we add 1.1 pseudo
observations from a uniform prior 1

K +1 to each substitute. This gives a Dirichlet parameter
of � k = sk



Experiment Dirichlet Dirichlet Normal-Logit
Prior Mean � j = sk

1� sj
, (sj = 0:75) 1

K +1
1

K



Mfg Product Treated Avg # � qk � qj � qk = Treated Avg # � qk � qj � qk =
Machine Cntl Subst Focal j� qj j Machine Cntl Subst Focal j� qj j

Weeks Per Trt Sales Sales Div Weeks Per Trt Sales Sales Div
Nestle Nonchoc Nestle (Con) 6 80.3 14.1 -19.8 71.1 3 8.7 9.4 -10.5 89.5
Mars M&M Peanut 186 120.3 482.4 -915.9 52.7 176 10.0 375.5 -954.3 39.4
Mars Twix Caramel 143 120.3 339.6 -682.6 49.7 134 9.8 289.6 -702.4 41.2
Misc Farleys (Con) 22 40.9 41.0 -121.2 33.8 18 4.6 14.9 -114.2 13.0
Hershey Choc Hershey (Con) 51 51.9 62.1 -210.0 29.6 41 8.8 29.8 -179.6 16.6



Manuf Product �
Focal
Sales

No
Prior

Beta-Bin
Diversion

m = J y

Beta-Bin
Diversion
m = 150

Beta-Bin
Diversion
m = 300

Beta-Bin
Diversion
m = 600

Snickers Removal
Nestle Nonchoc Nestle (Con) -10.5 89.5 12.4 5.9 3.1 1.6
Mars Twix Caramel -702.4 41.2 37.9 34.3 29.5 23.2
Mars M&M Peanut -954.3 39.4 37.0 34.5 30.8 25.5
Kellogg Rice Krispies Treats -66.5 26.7 13.5 8.4 5.0 2.9
Nestle Butter�nger -362.8 20.1 17.1 14.3 11.2 7.8
Mars Choc Mars (Con) -32.7 19.7 6.5 3.5 2.0 1.0
Pepsi Rold Gold (Con) -900.1 17.9 16.8 15.7 13.9 11.6
Hershey Choc Hershey (Con) -179.6 16.6 12.2 9.1 6.3 3.9

Zoo Animal Crackers Removal
Hershey Payday -0.4 84.7 0.6 0.3 0.1 0.1
Kellogg Rice Krispies Treats -37.8 62.2 23.2 12.7 7.2 3.9
Misc Salty United (Con) -18.9 55.1 12.6 6.3 3.4 1.8
Kraft Oreo Thin Crisps -37.8 39.4 14.7 8.0 4.5 2.4
Pepsi Rold Gold (Con) -440.8 25.9 22.9 19.8 16.2 12.1
Hershey Choc Hershey (Con) -132.6 25.3 17.1 12.0 7.9 4.7
Misc Hostess Pastry -62.2 23.7 11.8 7.2 4.4 2.5
Kraft Chse Nips Crisps -37.8 23.1 8.6 4.7 2.6 1.4

Chocolate Chip Famous Amos Removal
Nestle Choc Nestle (Con) -0.2 300.0 1.2 0.6 0.3 0.2
Hershey Choc Hershey (Con) -66.8 72.7 36.9 22.5 13.4 7.4
Kraft Oreo Thin Crisps -43.3 47.9 19.2 10.8 6.1 3.3
Pepsi Sun Chip -355.7 40.4 34.4 28.9 22.7 16.1
Hershey Payday 6.8 38.9
Misc Salty United (Con) -28.7 34.6 10.7 5.6 3.1 1.7
Pepsi Chs PB Frito Cracker -83.6 32.1 18.2 11.6 7.1 4.1
Kraft Planters (Con) -332.6 24.7 20.9 17.5 13.7 9.8

M&M Peanut Removal
Misc Hostess Pastry -38.6 32.5 12.3 6.9 4.0 2.3
Mars Snickers -1239.3 23.9 22.9 21.7 19.9 17.2
Kellogg Brown Sug Pop-Tarts -43.5 22.9 9.2 5.2 2.9 1.6
Misc Cli� (Con) -1.8 22.2 0.6 0.3 0.1 0.1
Nestle Nonchoc Nestle (Con) -4.6 19.5 1.3 0.6 0.3 0.2
Mars M&M Milk Chocolate -529.6 13.9 12.5 11.0 9.2 7.0
Mars Twix Caramel -1014.3 10.9 10.4 9.8 8.9 7.6
Kellogg Rice Krispies Treats -220.2 10.2 7.9 6.1 4.4 2.9

Table 19: Sensitivity of Beta-Binomial Diversion to Number of Pseudo Observations
y Number of pseudo observations is the number of products in the choice set during treatment period - 66, 64,

65, and 65, respectively.
� Focal Sales shows the change in focal product sales from the control to the treatment period. No Prior is
the raw diversion calculated as the ratio of the change in substitute product sales to the absolute value of
the change in focal product sales.
Beta-Bin Diversion is the diversion ratio calculated under Assumptions 1,2, and 3 (Unit Interval), using
di�erent number of pseudo-observations.
The products included in this table are the 8 products with highest raw diversion ratio.
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A.6 Stan Code for MCMC Estimator

This is code for the R librarystan (Team 2015) which recovers the MCMC estimator of the
diversion ratio under assumptions (1)-(4).

% Main Specification: Dirichlet Prior
data {

int<lower=1> J; // number of products, including outside good
int<lower=1> N[J]; // number of trials
int<lower=0> y[J]; // number of successes for each product j
vector[J] priors; // mean of the distribution of alpha

}

parameters {
simplex[J] theta;

}

model {
theta ~ dirichlet(priors);
for (j in 1:J) {

y[j] ~ binomial(N[j], theta[j]);
}

}

% Alternative Specification: Multinomial Logit/Normal
data {

int J; // number of products, including outside good
int N[J]; // number of trials
int y[J]; // number of successes for each product j
real mu_prior[J]; // mean of the distribution of alpha
real sigma_prior[J]; // standard deviation of the distribution of alpha

}

parameters {
row_vector[J] alpha; // probability of success = exp(alpha[j])/(sum(exp(alpha[j])))

}

transformed parameters {
row_vector[J] theta;
for (j in 1:J)

theta[j] <- exp(alpha[j])/(sum(exp(alpha))); // don't normalize the outside good
}

model {
for (j in 1:J)
alpha[j] ~ normal(mu_prior[j], sigma_prior[j]);

for (j in 1:J) {
y[j] ~ binomial(N[j], theta[j]);
}

}
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